Working with database
Working with databases in FastAPI involves using ORMs (Object-Relational Mappers) like SQLAlchemy, which allows you to interact with your database using Python objects. FastAPI doesn't come with a built-in database handling solution, but it integrates smoothly with SQLAlchemy for this purpose. Here's a comprehensive guide on how to set up and use databases with FastAPI.
Step-by-Step Guide to Using Databases in FastAPI
1. Install Required Packages
You will need SQLAlchemy, along with an appropriate database driver. For this guide, we'll use SQLite, which is simple and easy for demonstration purposes.
pip install fastapi sqlalchemy databases[sqlite] alembic
fastapi
: The web framework.sqlalchemy
: The ORM for database interactions.databases
: Async database support for FastAPI.alembic
: For database migrations (optional but recommended).
2. Set Up the Project Structure
Create a project structure as follows:
fastapi_database/
│
├── alembic/
├── main.py
├── models.py
├── schemas.py
├── crud.py
├── database.py
├── migrations/
│ ├── env.py
│ └── versions/
└── alembic.ini
main.py
: The FastAPI application.models.py
: SQLAlchemy models.schemas.py
: Pydantic models (schemas).crud.py
: CRUD operations (Create, Read, Update, Delete).database.py
: Database configuration and session management.alembic/
: Directory for Alembic configurations.migrations/
: Directory for Alembic migration scripts.
3. Database Configuration
Set up database.py
to handle the database connection and session management.
# database.py
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db" # Using SQLite for simplicity
# For PostgreSQL, use:
# SQLALCHEMY_DATABASE_URL = "postgresql://user:password@localhost/dbname"
engine = create_engine(
SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False} # Needed for SQLite
)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
create_engine
: Creates the engine to connect to the database.SessionLocal
: A session factory for managing database sessions.Base
: Base class for all ORM models.
4. Define SQLAlchemy Models
Create models.py
to define your database models.
# models.py
from sqlalchemy import Column, Integer, String, Boolean
from .database import Base
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True, index=True)
username = Column(String, unique=True, index=True)
email = Column(String, unique=True, index=True)
full_name = Column(String)
hashed_password = Column(String)
is_active = Column(Boolean, default=True)
- This example defines a
User
model with several fields.
5. Pydantic Schemas
Create schemas.py
to define the data validation and serialization schemas.
# schemas.py
from pydantic import BaseModel
class UserBase(BaseModel):
username: str
email: str
full_name: str | None = None
is_active: bool | None = None
class UserCreate(UserBase):
password: str
class User(UserBase):
id: int
class Config:
orm_mode = True
UserBase
: Base schema for common user fields.UserCreate
: Schema for user creation, including the password.User
: Schema for representing a user, including the ID.
6. CRUD Operations
Create crud.py
to define functions for CRUD operations.
# crud.py
from sqlalchemy.orm import Session
from . import models, schemas
def get_user(db: Session, user_id: int):
return db.query(models.User).filter(models.User.id == user_id).first()
def get_user_by_email(db: Session, email: str):
return db.query(models.User).filter(models.User.email == email).first()
def get_users(db: Session, skip: int = 0, limit: int = 10):
return db.query(models.User).offset(skip).limit(limit).all()
def create_user(db: Session, user: schemas.UserCreate):
fake_hashed_password = user.password + "notreallyhashed" # Replace with a real hashing mechanism
db_user = models.User(
username=user.username, email=user.email, full_name=user.full_name, hashed_password=fake_hashed_password
)
db.add(db_user)
db.commit()
db.refresh(db_user)
return db_user
- These functions interact with the database using SQLAlchemy queries.
- In a real application, ensure to use a proper password hashing mechanism like
bcrypt
.
7. Create API Endpoints
In main.py
, set up the FastAPI application and endpoints.
# main.py
from fastapi import FastAPI, Depends, HTTPException
from sqlalchemy.orm import Session
from typing import List
from . import crud, models, schemas, database
models.Base.metadata.create_all(bind=database.engine) # Create tables
app = FastAPI()
@app.post("/users/", response_model=schemas.User)
def create_user(user: schemas.UserCreate, db: Session = Depends(database.get_db)):
db_user = crud.get_user_by_email(db, email=user.email)
if db_user:
raise HTTPException(status_code=400, detail="Email already registered")
return crud.create_user(db=db, user=user)
@app.get("/users/", response_model=List[schemas.User])
def read_users(skip: int = 0, limit: int = 10, db: Session = Depends(database.get_db)):
users = crud.get_users(db, skip=skip, limit=limit)
return users
@app.get("/users/{user_id}", response_model=schemas.User)
def read_user(user_id: int, db: Session = Depends(database.get_db)):
db_user = crud.get_user(db, user_id=user_id)
if db_user is None:
raise HTTPException(status_code=404, detail="User not found")
return db_user
/users/
: POST endpoint to create a new user./users/
: GET endpoint to list users with pagination./users/{user_id}
: GET endpoint to retrieve a user by ID.
8. Running the Application
Start your FastAPI application using Uvicorn:
uvicorn main:app --reload
- Open your browser and navigate to
http://localhost:8000/docs
to access the interactive Swagger UI. - Use the endpoints to interact with your database.
9. Handling Database Migrations with Alembic
Alembic is a lightweight database migration tool for SQLAlchemy. It's used to handle schema changes over time in a controlled and versioned manner.
Initial Alembic Setup
Initialize Alembic:
alembic init alembic
This creates the alembic
directory and configuration files.
Edit alembic.ini
to set your database connection URL:
# alembic.ini
sqlalchemy.url = sqlite:///./test.db # Update this with your database URL
Edit alembic/env.py
to import your metadata:
# alembic/env.py
from logging.config import fileConfig
from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
# Interpret the config file for Python logging.
# This line sets up loggers basically.
fileConfig(config.config_file_name)
from myproject.database import Base # Import your Base
# add your model's MetaData object here
# for 'autogenerate' support
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def run_migrations_offline():
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online():
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = engine_from_config(
config.get_section(config.config_ini_section),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(connection=connection, target_metadata=target_metadata)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()
Generate the initial migration script:
alembic revision --autogenerate -m "Initial migration"
Apply the migration:
alembic upgrade head
This creates the initial tables in your database.
Key Concepts
- SQLAlchemy ORM: Provides a way to define your database schema as Python classes and interact with the database using Python objects.
- Pydantic: Used for defining request and response schemas and performing data validation.
- Database Sessions: Managed using SQLAlchemy's sessionmaker, allowing for controlled interactions with the database.
- CRUD Operations: Standard operations for creating, reading, updating, and deleting database records.
- Database Migrations: Alembic manages schema changes over time, enabling easy upgrades and downgrades of the database schema.
Conclusion
This guide provides a solid foundation for integrating FastAPI with a database using SQLAlchemy and managing your database schema with Alembic. By following these steps, you can build scalable and maintainable API applications with a robust data layer.
Further Reading
- FastAPI with Databases: FastAPI SQL Databases Documentation
- SQLAlchemy: SQLAlchemy Documentation
- Alembic: Alembic Documentation
- Pydantic: Pydantic Documentation
- Uvicorn: Uvicorn Documentation
By mastering these components, you can efficiently manage data in your FastAPI applications.