Fast API
FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.6+ based on standard Python type hints. It's designed for ease of use and efficiency, making it ideal for quickly developing robust APIs. This tutorial will guide you through creating a basic FastAPI application.
Step-by-Step FastAPI Tutorial
1. Set Up Your Development Environment
- Install Python: Ensure you have Python 3.7 or later installed.
- Create a Project Directory:
mkdir fastapi_tutorial cd fastapi_tutorial
- Set Up a Virtual Environment:
python -m venv venv source venv/bin/activate # On Windows, use `venv\Scripts\activate`
- Install FastAPI and Uvicorn:
pip install fastapi uvicorn
- FastAPI: The web framework.
- Uvicorn: An ASGI server to serve your FastAPI application.
2. Create a Basic FastAPI Application
- Create
main.py
:from fastapi import FastAPI app = FastAPI() @app.get("/") def read_root(): return {"Hello": "World"}
- Run the Application:
uvicorn main:app --reload
main
: The filemain.py
(without the.py
).app
: The FastAPI instance.--reload
: Enable auto-reload on code changes.
- Test the Application:
Open a browser and go to
http://127.0.0.1:8000/
to see{"Hello": "World"}
.
3. Defining Routes and Handling HTTP Methods
- Add More Routes in
main.py
:@app.get("/items/{item_id}") def read_item(item_id: int, q: str = None): return {"item_id": item_id, "q": q}
- This route captures
item_id
as a path parameter andq
as an optional query parameter.
- This route captures
- Test the Route:
Visit
http://127.0.0.1:8000/items/1?q=testing
.
4. Using Pydantic Models for Data Validation
- Define a Data Model:
Create a file named
models.py
:from pydantic import BaseModel class Item(BaseModel): name: str description: str = None price: float tax: float = None
- Update
main.py
to Use the Model:from fastapi import FastAPI from models import Item app = FastAPI() @app.post("/items/") def create_item(item: Item): return {"item": item}
- Test the POST Endpoint:
Use a tool like Postman or
curl
:curl -X 'POST' \ 'http://127.0.0.1:8000/items/' \ -H 'Content-Type: application/json' \ -d '{"name": "Apple", "price": 1.2, "description": "A juicy fruit", "tax": 0.1}'
The response should echo the JSON back, validating the structure based on theItem
model.
5. Dependency Injection
- Create a Dependency:
from fastapi import Depends def common_parameters(q: str = None, skip: int = 0, limit: int = 10): return {"q": q, "skip": skip, "limit": limit}
- Use the Dependency in Routes:
@app.get("/items/") def read_items(commons: dict = Depends(common_parameters)): return commons
- Test the Dependency:
Visit
http://127.0.0.1:8000/items/?q=fastapi&skip=10&limit=5
.
6. Serving HTML and Static Files
- Install Jinja2 for Templating:
pip install jinja2
- Create a Templates Directory:
Create a folder named
templates
and additem.html
:<!DOCTYPE html> <html> <head> <title>{{ title }}</title> </head> <body> <h1>{{ title }}</h1> <p>{{ description }}</p> </body> </html>
- Add a Static Directory:
Create a folder named
static
and add your static files (e.g., CSS, JS). - Serve HTML from FastAPI:
from fastapi import FastAPI, Request from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates app = FastAPI() templates = Jinja2Templates(directory="templates") @app.get("/items/{id}", response_class=HTMLResponse) def read_item(request: Request, id: str): return templates.TemplateResponse("item.html", {"request": request, "title": "Item", "description": f"Item {id}"})
- Test the HTML Endpoint:
Visit
http://127.0.0.1:8000/items/123
.
7. Advanced Features
- Background Tasks:
from fastapi import BackgroundTasks def write_log(message: str): with open("log.txt", "a") as log: log.write(message + "\n") @app.post("/log/") def log_message(message: str, background_tasks: BackgroundTasks): background_tasks.add_task(write_log, message) return {"message": "Message received"}
- WebSockets:
from fastapi import WebSocket @app.websocket("/ws") async def websocket_endpoint(websocket: WebSocket): await websocket.accept() while True: data = await websocket.receive_text() await websocket.send_text(f"Message text was: {data}")
- OAuth2 with Password (and Bearer) Tokens:
from fastapi.security import OAuth2PasswordBearer oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") @app.get("/users/me") async def read_users_me(token: str = Depends(oauth2_scheme)): return {"token": token}
8. Deployment
- Prepare for Deployment:
- Remove
--reload
and setdebug=False
. - Use an ASGI server like Uvicorn or Hypercorn for production.
- Remove
- Deploy with Uvicorn:
uvicorn main:app --host 0.0.0.0 --port 80
- Use Docker:
- Create a
Dockerfile
:FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7 COPY ./app /app
- Build and run the Docker image:
docker build -t fastapi-app . docker run -d --name fastapi-container -p 80:80 fastapi-app
- Create a
- Deploy on Cloud Platforms:
- Use platforms like AWS, Google Cloud, Heroku, or DigitalOcean with specific FastAPI deployment guides.
Summary
FastAPI simplifies the development of fast and robust APIs by leveraging Python's type hints. This tutorial covers the basics to get you started, from setting up the environment to deploying your application. With FastAPI's powerful features and the ability to handle complex use cases, you can build highly scalable applications.
For further reading and tutorials:
Feel free to ask if you need more details on any specific part of FastAPI!
Table of Contents