RestAPI app using FastAPI

Creating REST API applications using FastAPI involves setting up endpoints to handle various HTTP requests (GET, POST, PUT, DELETE, etc.), managing data with databases, handling authentication, and providing API documentation. FastAPI simplifies this process with its declarative approach and automatic generation of documentation and validation.

Below, I'll guide you through building a basic REST API application with FastAPI. We'll create a simple to-do list API that allows you to add, read, update, and delete tasks.

Step-by-Step Guide to Creating a REST API with FastAPI

1. Installation

First, install FastAPI and Uvicorn:

pip install fastapi uvicorn

2. Setting Up Your Project Structure

Organize your project with the following structure:

my_fastapi_app/
│
├── main.py             # Entry point for the application
├── models.py           # Data models
├── schemas.py          # Pydantic models for request/response validation
├── crud.py             # CRUD operations
├── database.py         # Database configuration
└── __init__.py         # Package initialization

3. Creating the FastAPI App

Start with the main.py file. This is where you initialize your FastAPI application and define the routes.

main.py:

from fastapi import FastAPI, Depends, HTTPException
from sqlalchemy.orm import Session
from typing import List

from . import models, schemas, crud
from .database import SessionLocal, engine

# Create the database tables
models.Base.metadata.create_all(bind=engine)

app = FastAPI()

# Dependency to get the DB session
def get_db():
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close()

@app.get("/")
def read_root():
    return {"message": "Welcome to the ToDo API"}

# Read tasks
@app.get("/tasks/", response_model=List[schemas.Task])
def read_tasks(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)):
    tasks = crud.get_tasks(db, skip=skip, limit=limit)
    return tasks

# Create a task
@app.post("/tasks/", response_model=schemas.Task)
def create_task(task: schemas.TaskCreate, db: Session = Depends(get_db)):
    return crud.create_task(db=db, task=task)

# Read a single task by ID
@app.get("/tasks/{task_id}", response_model=schemas.Task)
def read_task(task_id: int, db: Session = Depends(get_db)):
    db_task = crud.get_task(db, task_id=task_id)
    if db_task is None:
        raise HTTPException(status_code=404, detail="Task not found")
    return db_task

# Update a task
@app.put("/tasks/{task_id}", response_model=schemas.Task)
def update_task(task_id: int, task: schemas.TaskUpdate, db: Session = Depends(get_db)):
    return crud.update_task(db=db, task_id=task_id, task=task)

# Delete a task
@app.delete("/tasks/{task_id}", response_model=schemas.Task)
def delete_task(task_id: int, db: Session = Depends(get_db)):
    return crud.delete_task(db=db, task_id=task_id)

4. Defining Data Models with SQLAlchemy

models.py:

from sqlalchemy import Column, Integer, String, Boolean
from .database import Base

class Task(Base):
    __tablename__ = "tasks"

    id = Column(Integer, primary_key=True, index=True)
    title = Column(String, index=True)
    description = Column(String, index=True)
    completed = Column(Boolean, default=False)

5. Creating Pydantic Schemas for Data Validation

schemas.py:

from pydantic import BaseModel

class TaskBase(BaseModel):
    title: str
    description: str | None = None
    completed: bool = False

class TaskCreate(TaskBase):
    pass

class TaskUpdate(TaskBase):
    pass

class Task(TaskBase):
    id: int

    class Config:
        orm_mode = True

6. Implementing CRUD Operations

crud.py:

from sqlalchemy.orm import Session
from . import models, schemas

def get_tasks(db: Session, skip: int = 0, limit: int = 10):
    return db.query(models.Task).offset(skip).limit(limit).all()

def get_task(db: Session, task_id: int):
    return db.query(models.Task).filter(models.Task.id == task_id).first()

def create_task(db: Session, task: schemas.TaskCreate):
    db_task = models.Task(**task.dict())
    db.add(db_task)
    db.commit()
    db.refresh(db_task)
    return db_task

def update_task(db: Session, task_id: int, task: schemas.TaskUpdate):
    db_task = db.query(models.Task).filter(models.Task.id == task_id).first()
    if db_task:
        for key, value in task.dict().items():
            setattr(db_task, key, value)
        db.commit()
        db.refresh(db_task)
        return db_task
    return None

def delete_task(db: Session, task_id: int):
    db_task = db.query(models.Task).filter(models.Task.id == task_id).first()
    if db_task:
        db.delete(db_task)
        db.commit()
        return db_task
    return None

7. Setting Up the Database

database.py:

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

Base = declarative_base()

8. Running the Application

With everything set up, you can now run your FastAPI application using Uvicorn:

uvicorn main:app --reload

This will start the server on http://localhost:8000 with auto-reload enabled, meaning it will restart whenever you make changes to the code.

9. Testing Your API

You can interact with your API using tools like curl, Postman, or by navigating to the interactive API documentation provided by FastAPI at http://localhost:8000/docs.

For example, to create a new task, you can send a POST request to /tasks/ with JSON data for the task:

{
  "title": "Write FastAPI Guide",
  "description": "Create a comprehensive guide for FastAPI.",
  "completed": false
}

Or, to get the list of tasks, send a GET request to /tasks/.

Conclusion

By following these steps, you've built a basic REST API with FastAPI. This example can be extended and customized to fit more complex requirements, including advanced database operations, user authentication, background tasks, and more. FastAPI's ease of use and powerful features make it an excellent choice for developing modern APIs.